Determining synthesis region of the single wall carbon nanotubes in arc plasma volume

نویسندگان

  • Xiuqi Fang
  • Alexey Shashurin
  • George Teel
  • Michael Keidar
چکیده

Arc discharge is one of the most efficient and environmental friendly method to synthesize Single Wall Carbon Nanotube (SWCNT). However, due to the ultra-fast synthesis procedure, localization of the SWCNT synthesis in an arc discharge plasma volume in situ has been a long standing problem. This relates to the ability of controlling volumetric synthesis of nanostructures in plasmas in general. In order to better understand the mechanism of the nanotube growth in plasma, we have developed an actuator driven high-speed system that is able to extract material from the arc plasma volume during the synthesis procedure. The majority of the SWCNTs produced using arc discharge method are semiconducting with diameter of about 1.5 nm. It is shown that the growth region of SWCNTs is between 3 mm and 11 mm away from the center of the arc discharge. Dependent on the origin, the length of SWCNTs increases non-monotonically up to 500 nm, while diameter and chirality only slightly depend on the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Synthesis of Carbon Nano Tubes by Arc Discharge Method in Liquid media

In this investigation a simplified arc discharge apparatus was used to synthesize mullti-wall carbon nanotubes. Because of not requiring vacuum equipment, heat exchange system, active or inert gases, this method is found to be cheaper and simpler than traditional arc discharge in gas environment. Using this method, CNTs are produced by performing an arc discharge between two graphite electrodes...

متن کامل

Mechanism of carbon nanostructure synthesis in arc plasma

Plasma enhanced techniques are widely used for synthesis of carbon nanostructures. The primary focus of this paper is to summarize recent experimental and theoretical advances in understanding of single-wall carbon nanotube SWNT synthesis mechanism in arcs, and to describe methods of controlling arc plasma parameters. Fundamental issues related to synthesis of SWNTs, which is a relationship bet...

متن کامل

Ways to Increase the Length of Single Wall Carbon Nanotubes in a Magnetically Enhanced Arc Discharge

Ability to control the properties of single-wall nanotubes produced in the arc discharge is important for many practical applications. Our experiments suggest that the length and purity of single-wall nanotubes significantly increase when the magnetic field is applied to the arc discharge. A model of a single wall carbon nanotube interaction and growth in the thermal plasma was developed which ...

متن کامل

Solvothermal synthesis of copper nanoparticles loaded on multi-wall carbon nanotubes as catalyst for thermal decomposition of ammonium perchlorate

Copper nanoparticles were synthesized on multiwall carbon nanotubes, (Cu)/(MWCNTs), based on solvothermal method. The used reagents include MWCNTs, cupric nitrate trihydrate (Cu (NO3)2.3H2O), diethylene glycol (DEG), diethanol amine. Characterization of Cu/MWCNTS nanoparticles was performed by techniques of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction sp...

متن کامل

The Attitude of Variation of Elastic Modules in Single Wall Carbon Nanotubes: Nonlinear Mass-Spring Model

The examination of variation of elastic modules in single wall carbon nanotubes (SWCNTs) is the aim of this paper. Full nonlinear spring-like elements are employed to simulate specific atomic structures in the commercial code ABAQUS. Carbon atoms are attached to each node as a mass point using atomic mass of carbon atoms. The influence of dimensions such as variation of length, diameter, aspect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016